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Abstract High levels of reactive oxygen species (ROS) produced in skeletal muscle
during exercise have been associated with muscle damage and impaired
muscle function. Supporting endogenous defence systems with additional
oral doses of antioxidants has received much attention as a noninvasive
strategy to prevent or reduce oxidative stress, decrease muscle damage and
improve exercise performance. Over 150 articles have been published on this
topic, with almost all of these being small-scale, low-quality studies. The con-
sistent finding is that antioxidant supplementation attenuates exercise-induced
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oxidative stress. However, any physiological implications of this have yet to
be consistently demonstrated, with most studies reporting no effects on ex-
ercise-induced muscle damage and performance. Moreover, a growing body
of evidence indicates detrimental effects of antioxidant supplementation on
the health and performance benefits of exercise training. Indeed, although
ROS are associated with harmful biological events, they are also essential to
the development and optimal function of every cell. The aim of this review is
to present and discuss 23 studies that have shown that antioxidant supple-
mentation interferes with exercise training-induced adaptations. The main
findings of these studies are that, in certain situations, loading the cell with
high doses of antioxidants leads to a blunting of the positive effects of exercise
training and interferes with important ROS-mediated physiological process-
es, such as vasodilation and insulin signalling. More research is needed to
produce evidence-based guidelines regarding the use of antioxidant supple-
mentation during exercise training. We recommend that an adequate intake
of vitamins and minerals through a varied and balanced diet remains the best
approach tomaintain the optimal antioxidant status in exercising individuals.

1. Introduction

Antioxidant supplementation is a common
practice amongst both professional athletes and
amateur sportspersons, and the market offering
various nutrient supplements is immense.[1] Al-
though these products have been touted as a
means of preventing exercise-induced oxidative
damage and enhancing performance, consistent
evidence of their efficacy is lacking. Moreover, it
is clear that reactive oxygen species (ROS) pro-
duced during exercise play important roles in
various cellular processes and, therefore, sup-
pressing their formation with high doses of anti-
oxidants might have a deleterious impact on cell
function.

The studies included in the reviewwere identified
by a systematic search using the PubMed database.
Search terms were ‘reactive oxygen species’, ‘oxi-
dative stress’, ‘antioxidant’, ‘exercise’, ‘skeletal
muscle’, ‘muscle damage’ and ‘performance’. Fur-
ther searching was performed by using the ‘related
citations’ function of PubMed and scanning of the
reference lists. We located over 150 studies in-
vestigating the effects of antioxidant supplementa-
tion on exercise-induced oxidative stress, muscle
damage, recovery and performance. A number of
excellent reviews are already available that contain
a greater discussion of these studies.[2-11] In addi-

tion, more detail on the effects of antioxidant ther-
apy in human disease was beyond the scope of this
review and can be found elsewhere.[12-17] The aim
of this review is to discuss the studies that have
shown negative effects of antioxidant supplements
in exercising individuals, thus demonstrating the
importance of ROS in skeletal muscle function.

2. Basic Mechanisms of Oxidative
Damage

2.1 Redox Reactions

Reactions of oxidation and reduction, known
as redox reactions, refer to all chemical reactions
in which an atom in a compound has its oxidation
number changed. The oxidation number is the
effective charge that the central atom in a com-
pound would have if all the ligands, including
shared electron pairs, were removed. Oxidation
can be explained as the loss of electrons, or more
accurately, an increase of the oxidation number.
Reduction is the gain of electrons or a decrease of
the oxidation number. An oxidant is a compound
that can accept electrons and is therefore reduced
causing another substance to be oxidized. A re-
ductant, on the other hand, donates electrons and
is oxidized causing another substance to be re-
duced. Oxidation and reduction, which represent
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the basis for numerous biochemical pathways,
always accompany one another in order to
transfer electrons between species. In a biological
environment, oxidants and reductants are often
called pro-oxidants and antioxidants, respectively.
A cell’s redox state describes the pro-oxidant/
antioxidant balance and plays an important role in
signalling and metabolic processes.[18,19]

While oxygen is obviously vital for the life of
aerobic organisms, the by-products of its metab-
olism can be harmful to cells. During normal
metabolism, oxygen is utilized in the mitochon-
dria for energy production. In the process of
oxidative phosphorylation the majority of oxy-
gen consumed is bound to hydrogen to form
water. A small percentage of oxygen is not com-
pletely reduced, which leads to the production of
oxygen intermediates known as ROS.[8] When
reactants are derived from nitrogen, they are
called reactive nitrogen species. Reactive species
can be classified into two categories: free radicals
and nonradical derivatives. A radical is any che-
mical compound capable of independent exis-
tence possessing one or more unpaired electrons
in the outer-atomic or molecular orbital. These
species have an enhanced affinity to donate or
obtain another electron to become more stable,
which leads to the formation of new free radicals,
setting up a chain reaction. The free radical group
includes compounds such as the superoxide anion
radical (O2�

-), nitric oxide radical (NO�), nitric
dioxide radical (NO2�), hydroxyl radical (OH�),
alkoxyl (RO�) and peroxyl (RO2�) radicals. Most
typical nonradical reactive species relevant to
biological systems are singlet oxygen (1O2), ozone
(O3), hydrogen peroxide (H2O2), peroxynitrite
(ONO2

-), hypochlorous acid (HOCl), organic
peroxides and aldehydes. Reactive species readily
react with various organic substrates and play
important roles in biological environments.[20]

Cells and extracellular spaces are exposed to a
large variety of reactive species from both exo-
genous and endogenous sources. The exogenous
sources include exposure to oxygen, radiation,
air pollutants, xenobiotics, drugs, alcohol, heavy
metals, bacteria, viruses, sunlight, food and
exercise. Nonetheless, exposure to endogenous
sources is much more important and extensive,

because it is a continuous process during the life
span. Reactive species are generated by all aero-
bic cells as part of normal metabolism. Mi-
tochondria have been known as the dominant
source of ROS production.[18] However, it has
been suggested that the actual fraction of oxygen
transformed into ROS accounts for only around
0.15% of total oxygen consumption (

.
VO2),

[21]

which is considerably less than original estimate
of 2–5%.[22,23] Enzymes, such as nicotinamide
adenine dinucleotide phosphate oxidase (NADPH
oxidase), nitric oxide synthase (NOS) and
xanthine oxidase (XO), are now recognized as the
main endogenous source of reactive species.[24]

Furthermore, transition metals have been shown
to catalyze ROS formation[25] and in order to
combat bacteria and other invaders white blood
cells also produce a significant amount of reactive
species.[26]

The most vulnerable targets of reactive species
are proteins, lipids andDNA.[27] ROS can oxidize
proteins and alter their structure, impair their
function and affect genetic transcription.[28,29]

Fragmentation or loss of certain amino acids and
aggregation make proteins more susceptible to
proteolytic degradation.[30] Reactive species have
the ability to oxidize polyunsaturated free fatty
acids and initiate lipoprotein oxidation.[31] Dis-
ruption of the lipid bilayer changes fluidity and
permeability of the cell membrane and may lead
to inactivity of membrane bound proteins. Free
radicals cause DNA strand breaks, loss of pur-
ines and damage to deoxyribose sugar.[32] They
can impair the DNA repair system and provoke
mutagenesis. Oxidative damage promotes in-
flammation[33] and apoptosis[34] and may even-
tually lead to decreased cellular and physiological
functioning.

2.2 The Antioxidant Defence

To counter reactive species, we are equipped
with highly effective antioxidant defence systems.
These include nonenzymatic, enzymatic and diet-
ary antioxidants. Glutathione, uric acid, lipoic
acid, bilirubin and coenzyme Q10 are examples of
nonenzymatic antioxidants that originate from
endogenous sources and are often by-products of
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cellular metabolism. Principal enzymatic antioxi-
dants are superoxide dismuatse (SOD), catalase,
glutathione peroxidase (GPX) and glutathione re-
ductase, while most known examples of dietary
antioxidants are tocopherols (vitamin E), ascorbic
acid (vitamin C) and carotenoids (b-carotene).
In addition, various polyphenolic compounds
have recently been promoted as nutrient anti-
oxidants. a-Lipoic acid and pharmaceuticals
N-acetylcysteine and allopurinol have also been
used in supplementation studies.

Vitamin E refers to a group of fat-soluble
compounds that include tocopherols and toco-
trienols. a-Tocopherol is the most biologically
active form, and has been shown to protect the
cells from lipid peroxidation[35,36] and play a role
in prevention of chronic diseases associated with
oxidative stress.[37,38] The oxidized form can be
recycled back to the active form by other anti-
oxidants, such as vitamin C, retinol, ubiquinol,
glutathione, cysteine and a-lipoic acid.[39] It
has been suggested that vitamin E has other func-
tions apart from its antioxidative one. For in-
stance, g-tocopherol acts as a nucleophile and is
able to trap electrophilic mutagens in lipophilic
compartments.[40]

Vitamin C or L-ascorbic acid is an antioxidant
and a co-factor in a range of essential metabolic
reactions in humans (e.g. collagen synthesis).[41]

This water-soluble vitamin is produced endo-
genously by almost all organisms, excluding hu-
mans, several other mammalian groups and some
species of birds and fish. L-ascorbate, an ion form
of ascorbic acid, is a strong reducing agent and its
oxidized form is reduced back by enzymes and
glutathione.

b-Carotene belongs to a group of red, orange
and yellow pigments called carotenoids.[42] Others
include a-carotene, b-cryptoxanthin, lycopene,
lutein and zeaxanthin. These fat-soluble sub-
stances are found in plants and play a part in
photosynthesis. b-Carotene is the most active
carotenoid; after consumption it converts to
retinol, a readily usable form of vitamin A. In
addition to its provitamin A function, b-carotene
is believed to have antioxidant properties,[43] and
may positively impact the immune system[44] and
exhibit anticancerogenic effects.[37]

Coenzyme Q10, also known as ubiquinone, is a
fat-soluble, vitamin-like substance, present in most
eukaryotic cells, primarily in mitochondria.[45] It is
a component of the electron transport chain and
plays a part in the energy production of a cell. Its
reduced form, ubiquinol, acts as an important an-
tioxidant in the body. CoenzymeQ10 is synthesized
endogenously, and its dietary uptake is limited.

Polyphenols are a group of water-soluble,
plant-derived substances, characterized by the
presence of more than one phenolic group.[46]

Several thousand polyphenols have been identi-
fied and they are divided into different groups
according to their structure and complexity
(flavonoids, lignans, stilbenes, coumarins and
tannins). Flavonoids are the largest group of
phenolic compounds and include anthocyanins,
flavones, isoflavones, flavonols, flavanones and
flavanols. Fruits and vegetables are a particularly
rich source of polyphenols. For instance, red
wine contains various polyphenolic compounds,
such as stilbene resveratrol and flavonol querce-
tin, which have been well studied and have been
shown to possess pharmacological properties
in the treatment of chronic diseases.[47,48] The
antioxidant potential of polyphenols has been
well established and is exhibited through their
chain-breaking and single-electron transfer abil-
ities. However, there is compelling evidence that
the protective actions of polyphenols are not
simply because of their redox properties, but
rather as a result of their ability to modulate
cellular signalling cascades by binding to specific
target proteins.[46]

a-Lipoic acid is an organosulfur compound de-
rived from octanoic acid. It is an essential co-factor
of the four mitochondrial enzyme complexes,
therefore, is crucially involved in aerobic metabo-
lism. a-Lipoic acid may have potent antioxidant
potential and can recycle vitamin E;[49] however, its
accumulation in tissues is limited. Micronutrient
functions of a-lipoic acid may act more as an
effector of cellular stress response pathways.[50]

N-acetylcysteine is a by-product of an en-
dogenously synthesized antioxidant glutathione.
It is a cysteine derivative and plays a role in
glutathione maintenance and metabolism.
N-acetylcysteine has been proposed to have
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antioxidant effects and is used as a pharmaceu-
tical drug (mucolytic agent) and a nutritional
supplement.[51]

Allopurinol, a structural isomer of hypox-
anthine, is an inhibitor of XO. It is a drug primarily
used to treat hyperuricaemia, as it decreases uric
acid formation and purine synthesis.[52]

Antioxidants are often divided into two
groups: those that act either through stabilizing
ROS or by removing reactive intermediates. The
former, also known as preventative antioxidants,
stabilize free radicals by donating electrons and
become oxidized themselves, forming less active
radicals. The latter, ‘scavengers’, help slow or
stop the damaging chain reaction by removing
free radical intermediates. In addition, transition
metal sequestration and oxidative damage-
repairing mechanisms support the body’s defence
system. Endogenous antioxidant systems re-
spond rapidly to an increased production of
reactive species. Cells can modulate gene expres-
sion and the activity of antioxidant enzymes to
cope with oxidative stress.[18,53]

2.3 Oxidative Stress

Despite the extensive defence system, an in-
crease in ROS production or diminished anti-
oxidants can lead to progressive cell damage and
a decline in physiological function.When oxidant
capacity exceeds the antioxidant capacity,
homeostatic balance is disturbed and the redox
state becomes more pro-oxidizing. This im-
balance is called oxidative stress.[54] As we now
know that individual signalling and control events
occur through discrete redox pathways, rather
than through global balances, the classic defini-
tion of oxidative stress has been refined and also
considers oxidative stress as a disruption of redox
signalling and control.[55] Therefore, oxidative
stress may occur without an overall imbalance of
pro-oxidants and antioxidants and can cause
organ-specific and pathway-specific toxicity.

Under usual lifestyle conditions we are ex-
posed to high levels of reactive species from exo-
genous sources (e.g. environmental pollution)[56]

and oxidative stress has been implicated in a
growing list of human diseases, such as cardio-

vascular, inflammatory, metabolic and neuro-
degenerative diseases, as well as cancer and the
ageing process.[57] A diet rich in antioxidants has
been identified as a potentially noninvasive
means of controlling oxidative stress.[58,59] Anti-
oxidant supplementation has received much
attention because of its capacity to support the
endogenous defence by scavenging additional
ROS and, therefore, by reducing oxidative
damage.[60-62] However, there is little evidence for
the efficacy of antioxidant supplements to treat
ROS-associated diseases. This has led to con-
siderable debate regarding the beneficial health
effects of this kind of supplementation in differ-
ent types of patients and with different types of
antioxidants.[13,63,64] Although observational
epidemiological cohort studies with large num-
bers of subjects and diverse populations have
been largely supportive of the health-promoting
effects of antioxidants,[65-68] interventional trials
have been controversial, with some positive
findings,[37,38,69] many null findings[70-73] and some
suggesting a detrimental effect of antioxidant
supplementation, particularly vitamin E, on
morbidity and mortality.[74-76]

2.4 Beneficial Roles of Reactive Species

Although reactive species are associated with
harmful biological events, they are essential in cel-
lular development and optimal function.[77,78] Cells
have evolved strategies to utilize reactive species
as biological stimuli. They act as subcellular mes-
sengers in important molecular signalling processes
and modulate enzyme and gene activation.[77] Most
antioxidant enzyme genes contain regulatory
sequences in their promoter and intron regions that
can interact with redox sensitive transcription
factors.[79] Reactive species play significant roles in
cellular growth and proliferation.[77] It has been
shown recently that physiological levels of ROS are
required to activate DNA repair pathways for
maintaining genomic stability in stem cells.[80] Fur-
thermore, ROS are involved in the biosynthesis of
other molecules,[81] the immune response of cells[26]

and drug detoxification.[77] They are a requisite for
vasodilation,[82] optimal muscular contraction[83]

and initiation of apoptosis.[34]
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3. Exercise-Induced Oxidative Stress

3.1 Reactive Species in Skeletal Muscle

During contraction, skeletal muscle is a major
source of ROS, as well as one of the main tar-
gets.[24] Exercise increases

.
VO2 by up to 20 times

above resting values.[84] In the mitochondria
of exercising muscle cells, this translates to a
200-fold greater oxygen usage.[84] Exercise-
induced oxidative stress was first described in the
late 1970s when increased levels of lipid perox-
idation products were found in the expired air of
exercising humans[35] and the tissues of exercised
rats.[85] In 1982, Davies et al.[86] provided the
first direct evidence that high-intensity exercise
significantly increased ROS production in the
muscles and liver of rats, and caused damage to
mitochondrial membranes. It was suggested that
this could, at the same time, deliver a stimulus to
mitochondrial biogenesis. However, the majority
of following studies focused on the damaging
effects of oxidants in muscle and looked for the
potential benefits of antioxidants. Over the last
30 years, an understanding of the sources and
consequences of exercise-produced ROS has
advanced markedly. It is now clear that reactive
species play important roles in skeletal muscle
function and metabolism. Redox signalling in
contracting muscle is considered one of the basic
elements in exercise biology.[24]

3.2 Adaptation to Exercise-Induced Oxidative
Stress

Cells adapt to increased ROS production to
become more resistant to the adverse effects of
oxidative stress.[87] It has to be emphasized,
however, that the effects of a single bout of
exercise and regular exercise are quite different.
Regular physical activity brings about numerous
beneficial effects and the body adapts to elevated
oxidant levels, whilst with acute exercise, the
adaptation is only marginal. Acute adjustment
involves increased vasodilation to enhance blood
flow and fuel transport and a kinetic shift via the
allosteric activity of enzymes, which may not be
sufficient to restore oxidant-antioxidant homeo-
stasis.[88] Long-term stimulation of endogenous

defence mechanisms requires the continuous
presence of physiological stimuli that maintain a
certain degree of pro-oxidative milieu, and effec-
tively overload the antioxidant systems.[89]

With exercise training the body adapts to ex-
ercise-induced oxidative stress and becomes more
resistant to subsequent oxidative challenges. This
is achieved through a number of different mech-
anisms, such as upregulation of redox-sensitive
gene expression and antioxidant enzymes le-
vels,[90,91] an increase in enzyme activity,[92,93]

stimulation of protein turnover,[94] improvement
in DNA-repair systems,[95,96] and increased mi-
tochondrial biogenesis[97] and muscle content of
heat shock proteins (HSPs).[98,99] In addition,
adaptation positively affects remodelling of
skeletal muscle after injury and attenuates in-
flammation and apoptosis.[88,100,101]

Moderate levels of reactive species appear
necessary for various physiological processes,
whereas, an excessive ROS production causes
oxidative damage. This may be described by the
concept of hormesis, a dose-response relationship
in which a low dose of a substance is stimulatory
or beneficial and a high dose is inhibitory or
toxic.[102] The adaptive response of mitochondria
to increased formation of ROS is termed
mitochondrial hormesis or mitohormesis.[103]

The hormetic action of reactive species could
represent a mechanism underlying the health
and performance benefits of regular physical ac-
tivity.[102] This can be seen in the role of reactive
species as endogenous regulators of skeletal
muscle function. Indeed, they appear obligatory
for optimal contractile activity. Muscle myofila-
ments, such as myosin and troponin, and proteins
in the sarcoplasmic reticulum are redox-sensitive,
which gives ROS the ability to alter muscle con-
traction.[104] Based on Reid’s model for the role
of redox state on muscle force production, reac-
tion to ROS can be described by a bell-shaped
curve.[104,105] At baseline, low oxidant levels
appear to be suboptimal for the contraction of
unfatigued muscle. The data from Reid’s studies
suggest modest augmentation in ROS levels cau-
ses muscle force to increase, while antioxidants
deplete oxidant levels and depress force. At
higher ROS concentrations this is reversed and
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force production decreases in a time- and dose-
dependent manner.[105-107]

3.3 Oxidative Stress and Muscle Damage

Despite skeletal muscle being relatively resistant
to exercise-induced oxidative damage, it is clear
that intense and/or prolonged muscular activity
can result in harmful outcomes.[9] Repetitive ec-
centric contractions, if unaccustomed in particular,
place skeletal muscle under considerable stress that
may cause muscle damage.[108,109] Damaging ex-
ercise also induces an inflammatory response,
which further increases ROS formation.[110] How-
ever, the studies often lack the information about
the subjects’ redox status and therefore fail to
provide evidence for the causal role of ROS in
muscle damage.

Themajority of studies have measured indirect
and nonspecific indices of muscle damage,
such as muscle soreness and reduction in the
muscle force production. Eccentric exercise
was shown to cause structural changes of muscle
fibres,[108,109,111,112] and has been associated with
muscular soreness,[110,113,114] reduced range of
motion[110] and loss of torque and force produc-
tion.[109,111,112,115,116] This may result in muscle fa-
tigue and development of muscular atrophy.[117-119]

Extreme fatigue can lead to muscle injury and,
possibly, irreversible cell alterations.[119,120]

4. Antioxidant Supplementation
and Exercise

4.1 Overview

It is common practice for athletes to use anti-
oxidant supplements with the notion that they
prevent the deleterious effects of exercise-induced
oxidative stress, hasten recovery of muscle func-
tion and improve performance.[1,121-125] Indeed,
there is now an enormous range of vitamins, mi-
nerals and extracts marketed as antioxidant sup-
plements. None have undergone adequate test-
ing, and therefore lack scientific evidence
regarding efficacy and long-term safety.

The popularity of antioxidant supplements
with athletes has led to a plethora of small
research studies in this area. As expected, the

studies varied considerably in terms of research
design, exercise protocol, population groups,
supplementation regimen and analysis methods.
Importantly, the studies are also of generally low
quality. As commonly found in sports nutrition
research, the vast majority do not adhere to all
the accepted features of a high-quality trial (e.g.
placebo-controlled, double-blind, randomized
design with an intent-to-treat analysis). Indeed,
most studies fail to provide sufficient detail
regarding inclusion and exclusion criteria, justi-
fication of sample size, adverse events, data
gathering and reporting, randomization, alloca-
tion and concealment methods, and an assess-
ment of blinding success. The poor quality of the
majority of studies in this field increases the
possibility for bias and needs to be always con-
sidered when evaluating the findings.

Supplements used in the studies include vita-
min E, vitamin C, b-carotene, coenzyme Q10, a-
lipoic acid,N-acetylcysteine, allopurinol, quercetin,
resveratrol and several other polyphenolic com-
pounds. A number of studies have used combi-
nations of these. The range of dosages across
the supplements was wide and duration of sup-
plemention varied from acute (1–2 days) to
chronic administration (from 1 week to up to
6 months). Blood, urine, breath and muscle tissue
samples were collected pre-, during and post-
supplementation and exercise. The most common
outcome measure was a marker of oxidative
stress with lipid peroxidation products pre-
dominating, followed by oxidized proteins, DNA
damage markers and alterations in endogenous
antioxidant systems. Direct measurement of
reactive species concentration (e.g. electron spin
resonance spectroscopy) was only performed
in a small number of studies because of the in-
stability of ROS, high costs and extensive work-
up requirements.

4.2 Antioxidant Supplementation and
Exercise-Induced Oxidative Stress

The majority of studies have used measures of
oxidative stress as their main outcome, and most
have demonstrated that antioxidants attenuate
exercise-induced increases in oxidative stress.
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Most common antioxidants in these positive
studies were vitamin E[35,36,62,126-132] and vitamin
C,[60,116,133-137] followed by different combina-
tions of antioxidants[61,138-147] and, most recently,
polyphenolic compounds.[148-156] Furthermore,
lower levels of oxidative stress markers have been
reported after b-carotene,[157] a-lipoic acid,[158]

N-acetylcysteine[159] and selenium[160] adminis-
tration. However, there have been many studies
showing no significant effect of antioxidant
supplements on exercise-induced oxidative
stress[110,161-172] and several indicating increased
oxidative stress levels following antioxidant ad-
ministration.[144,173-176]

Although the majority of studies report that
antioxidants can reduce oxidative stress levels,
the physiological implications of these effects
are unknown. In an attempt to determine
the importance of reducing oxidative stress, in-
vestigators have studied the role of antioxidant
supplementation in exercise performance and
muscle damage.

4.3 Antioxidant Supplementation and Muscle
Damage

Strong evidence to support the role of anti-
oxidant supplementation in protecting against
muscle damage is lacking. The majority of
investigations have focused on the effects of
vitamin C and E and looked at oxidative
stress markers and plasma concentrations of in-
tramuscular enzymes, e.g. creatine kinase (CK)
and lactate dehydrogenase, rather than indices of
muscle damage such as force loss, muscle sore-
ness, structural changes of myoproteins and their
plasma concentration.[6] As a result of the lack of
direct measurement of specific indices of muscle
damage, it is unclear to what extent muscle
damage was induced in those studies. There are
reports that antioxidant supplementation could
offer some protection from exercise-induced cell
damage,[127,177-181] attenuate the inflammatory
response to exercise,[147,151,182-186] and reduce
muscle force loss[154,156,177,187] and fatigue.[188-191]

Other investigations, however, found no signif-
icant effect of antioxidants on indices of cell da-
mage,[111,113,161,192-194] muscle soreness[114,195-199]

and inflammation.[111,114,127,169,194,200,201] A num-
ber of studies suggested that antioxidant supple-
mentation may promote muscle damage and
possibly hinder recovery.[165,175,197,202] These
studies are the focus of this review and discussed
in section 5.

4.4 Antioxidant Supplements as
Ergogenic Aids

There has been a general inconsistency of
outcomes when investigating the role of anti-
oxidant supplementation in exercise performance
with the majority of the studies reporting no
benefits. In the early 1970s, Sharman and collea-
gues[203] showed that supplementation with
vitamin E had no beneficial effect on endurance
performance of adolescent male swimmers.
Moreover, the placebo group demonstrated
greater improvements of cardiorespiratory func-
tion with exercise training compared with the
antioxidant group, which may be the first report
of the unfavourable effect of supplementation. In
the studies that followed, vitamin E proved
ineffective in improving performance in swim-
mers,[204] professional cyclists,[132,205,206] non-
resistance-trained men,[202] athletic students[167]

and marathon runners.[207] Furthermore, vitamin
E supplements had no additive effect beyond that
of aerobic training on indices of physical perfor-
mance in a group of older sedentary adults.[208]

Supplementation with coenzyme Q10 did not
exhibit any significant effects on exercise perfor-
mance of men,[162,209,210] regardless of their age
and training status. Quercetin supplements also
failed to show any ergogenic effects in sedentary
individuals[199,211] or cyclists.[212] Polyphenol res-
veratrol did not improve muscle force output
and muscle fatigability in mice subjected to elec-
trically stimulated isometric contractions.[213] In
a study by Marshall et al.,[214] vitamin C was
shown to slow racing greyhounds.

Despite the presumption that antioxidants
work synergistically and may therefore be more
efficient in combating oxidative stress, combina-
tions of vitamins E, C, coenzyme Q10 and other
vitamins and minerals failed to improve the
exercise performance of competitive male
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runners,[215] cyclists,[144,216] triathletes,[217,218]

soccer players,[146,219] resistance-trained men,[220]

ultraendurance runners,[221] moderately trained
men,[222] and trained and untrained males and
females.[166]

Nonetheless, there have been a number of
studies showing positive, albeit, modest effects of
antioxidant supplementation on physical perfor-
mance. Coenzyme Q10 was associated with im-
proved maximal

.
VO2 (

.
VO2max)and aerobic and

anaerobic threshold of professional cross-
country skiers that resulted in an increased
exercise capacity and a faster recovery rate.[223]

Similarly, supplementation with coenzyme Q10

indicated beneficial effects on performance,
fatigue sensation and recovery during fatigue-
inducing workload trials in a group of healthy
volunteers.[189] Furthermore, results from sup-
plementation studies that involved male cy-
clists,[224] trained and untrained individuals[225]

and sedentary men[226] supported the perfor-
mance-enhancing effect of coenzyme Q10. Vita-
min E supplementation was proposed to have a
beneficial effect on the performance of climbers
at high altitude[128] and endurance performance
of mice,[227] rats[228] and sled dogs.[229] In two
early studies, supplementation with vitamin C
was associated with an improved exercise capa-
city of untrained male students[230] and ath-
letes.[231] In a study by Aguilo et al.,[232] male
athletes supplemented with a combination of vita-
min E, C and b-carotene exhibited lower blood
lactate levels after a maximal exercise test and ex-
hibited a more significant increase more in

.
VO2max

after 3months of exercise training than the placebo
group. Supplementation with different combina-
tions of antioxidants also positively affected
the exercise performance of students,[233] elderly
endurance-trained athletes[234] and aged rats.[139]

Medved and colleagues[235] have studied the
effect of N-acetylcysteine on muscle fatigue
and performance in untrained and trained men.
Although N-acetylcysteine was shown to mod-
ulate blood redox status during high-intensity
intermittent exercise, it did not affect time to
fatigue in a group of untrained men. Similarly,
N-acetylcysteine infusion during prolonged sub-
maximal exercise had no effect on time to fatigue

in a group of team-sport athletes and endurance-
trained cyclists. Nonetheless, the antioxidant
improved regulation of plasma K+ concentra-
tion and it was suggested the ergogenic effect of
N-acetylcysteine depends on an individual’s train-
ing status.[236] Finally, N-acetylcysteine infusion
during prolonged submaximal exercise was re-
ported to augment time to fatigue in a group of
well trained individuals, possibly by increasing
muscle cysteine and glutathione availability.[237]

Recently, there have been a number of in-
vestigations showing the performance enhancing
effects of polyphenols, including quercetin,[201,238-240]

resveratrol,[241] and polyphenolic compounds
from grape extract,[152] beetroot juice,[242-245]

Rhodiola rosea plant[246] and Ecklonia cava
algae.[247] Emerging evidence suggests that the
antioxidant potential of phenolic compounds is
unlikely to be the sole mechanism responsible
for their protective action, which could also be
mediated by their interaction with various key
proteins in the cell-signalling cascades.[248]

As mentioned above in section 4.1, many of
the studies evaluating the effects of antioxidants
on exercise performance have been of low quality
with small subject numbers. In addition, most
have had important methodological details left
out of the articles (e.g. recruitment, randomiza-
tion, allocation and concealment methods)
leading to the assumption that they were not
considered. This creates a potentially dangerous
bias in regards to subject selection and the
assessment of performance effects.

5. Antioxidant Supplementation
Interferes with the Beneficial
Effects of Exercise Training

Recent studies have indicated that antioxidant
supplements have a detrimental effect on the
health and performance benefits of exercise
training. Considering the multifunctional bene-
ficial roles of ROS in living organisms discussed
above in section 2.4, reports of unfavourable ef-
fects of antioxidant supplementation should not
come as a surprise. The studies reporting negative
outcomes are discussed in sections 5.1–5.3 with
more details presented in table I.

Antioxidant Supplementation in Exercise Training 1051

ª 2011 Adis Data Information BV. All rights reserved. Sports Med 2011; 41 (12)



Table I. Studies with negative outcomes using antioxidant supplementation during exercise training

Study (y) Subjects Supplements (daily dose) Duration Study design Findings

Malm et al.[249]

(1996)

15 M Coenzyme Q10 (120 mg) 20 d Placebo-controlled trial: Exercise tests:

anaerobic test (Wingate test, 5 min

recovery, 10 · 10 sec all-out cycling),
.
VO2

submax and max test. Exercise training: 9

sessions (15 · 10 sec all-out cycling

sprints). Samples: plasma CK activity

After exercise, CK levels › only in the

supplemented group. Subjects taking

supplements showed smaller training-

induced improvements in physical

performance than the placebo group

Malm et al.[250]

(1997)

18 M Coenzyme Q10 (120 mg) 22 d Placebo-controlled double-blind trial:

Exercise tests: anaerobic test (30 sec

all-out cycling, 5 min recovery, 10 · 10 sec

all-out cycling), submax and peak cycling
.
VO2 test,

.
VO2max running test. Exercise

training: 7 sessions (15 · 10 sec all-out

cycling sprints). Samples: plasma lactate

There was a greater increase in anaerobic

performance in the placebo group

compared with the supplemented group.

Moreover, supplementation was

associated with reduced exercise training-

induced increase in power output and

recovery rate between cycling sprints.

Coenzyme Q10 had no effect on submax

and peak cycling
.
VO2, running

.
VO2max and

lactate levels

Childs et al.[175]

(2001)

14 M Vitamin C (12.5 mg/kg BW)

+ NAC (10 mg/kg BW)

1 wk (post-

exercise)

Double-blind placebo-controlled trial:

Exercise protocol: eccentric arm exercise

(3 · 10 repetitions, 80% of 1RM). Samples:

serum free iron levels, plasma lipid

hydroperoxides, F2-isoprostanes,

myeloperoxidase and IL-6, plasma CK and

LDH activities, serum SOD and GPX

Exercise › inflammatory indicators, free

iron concentration and the levels of

oxidative stress and muscle damage

markers. The amount of iron, levels of lipid

hydroperoxides and isoprostanes and LDH

and CK activities were higher in the

supplemented group than in the placebo

group

Coombes et al.[251]

(2001)

28 F rats Vitamin E (10 000 IU/kg

diet) + a-lipoic acid

(1.65 g/kg diet)

8 d In situ experiment: Contractile

measurements (tibialis anterior): Po, Pt and

force-frequency curve, 60 min fatigue

protocol. Samples: muscle MDA and lipid

hydroperoxide

Contracted muscles of supplemented

animals had lower levels of oxidative stress

than the muscles from the control group.

Vitamin E and a-lipoic acid supplemen-

tation had no effect on muscle fatigue but

was associated with decreased muscle

force production at low stimulation

frequencies (in situ). In vitro experiments

indicated that vitamin E depressed force

production at low stimulation frequencies

32 F rats Vitamin E: 100, 200,

400 mM/DHLA;

100 mM/vitamin E;

400 mM + DHLA; 100mM

In vitro experiment: contractile measure-

ments (costal diaphragm): Po, Pt and force-

frequency curve, 30 min fatigue protocol

Marshall et al.[214]

(2002)

5 F racing

greyhounds

Vitamin C (1 g) 4 wk (each

treatment)

Crossover controlled trial: Treatments: no

supplementation; supplementation after

racing; supplementation 1 h before racing.

Exercise training: 2 · 500 m races/wk.

Samples: plasma TBARS and antioxidant

capacity

Vitamin C showed no effect on oxidative

stress and antioxidant capacity. The dogs

ran slower when supplemented

Continued next page
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Table I. Contd

Study (y) Subjects Supplements (daily dose) Duration Study design Findings

Avery et al.[202]

(2003)

18 untrained M Vitamin E (1200 IU) 3 wk Randomized placebo-controlled double-

blind trial: Exercise Protocol: 3 resistance

exercise sessions separated by 3 days of

recovery. Measurements: muscle

soreness, muscle strength and power

assessment. Samples: plasma MDA and

CK activity

There was no effect of supplementation on

muscle soreness, performance indices and

MDA levels. CK levels were greater in the

supplemented group than in the placebo

group

Bryant et al.[144]

(2003)

7 M cyclists Vitamin C (1 g)/vitamin C

(1 g) + vitamin E

(200 IU/kg)/vitamin E

(400 IU/kg)

3 wk (each

treatment)

Controlled crossover single-blind trial:

Treatments: placebo; vitamin C;

vitamin C + vitamin E; vitamin E. Exercise

tests: 60 min steady state ride

(70%
.
VO2max) and 30 min performance ride

(70%
.
VO2max). Samples: plasma MDA and

lactic acid

Supplementation had no effect on exercise

performance. Vitamin E fl MDA levels, the

combination of vitamins E and C had no

effect, vitamin C alone › MDA levels

Khassaf et al.[98]

(2003)

16 untrained M Vitamin C (500 mg) 8 wk Randomized controlled trial:

Muscle samples (exercise protocol: 45 min

single leg cycling, 70%
.
VO2max, vastus

lateralis): HSP60 and HSP70 content.

Lymphocytes (treated with H2O2 for

30 min): SOD and CAT activity, HSP60 and

HSP70 content

Supplementation with vitamin C was

associated with attenuated exercise-

induced increase in HSP content and SOD

and CAT activity

Nieman et al.[176]

(2004)

36 triathletes

(26 M, 10 F)

Vitamin E (800 IU) 2 mo Randomized placebo-controlled

double-blind trial: Ironman Triathlon

race – samples: plasma and urinary

F2-isoprostanes, urinary 8-OHdG and

8-oxoG, plasma lipid hydroperoxides

and cytokines

Post-race concentrations of isoprostanes,

lipid hydroperoxides, IL-6, IL-1ra and IL-8

increased more in the vitamin E group than

in the placebo group. Supplementation had

no effect on race time

Gomez-Cabrera

et al.[252] (2005)

20 M rats Allopurinol (32 mg/kg) Admin prior

to exercise

Randomized controlled trial:

Exercise protocol: progressive intensity

treadmill test, exercise to exhaustion.

Samples: plasma lactate and XO activity,

muscle GSH, GSSG, carbonylated

proteins, p38, ERK1 and ERK2, NF-kb
DNA-binding activity and Mn-SOD, iNOS

and eNOS

Allopurinol treated rats exhibited fl
oxidative stress levels and fl exercise-

mediated increase in XO activity and

induction of MAPKs. This was associated

with fl DNA binding of NF-kB and blunted

upregulation of Mn-SOD, eNOS and iNOS

gene expression

Gomez-Cabrera

et al.[253] (2006)

25 marathon

runners

Allopurinol (300 mg) 2 h prior to

marathon

race

Randomized placebo-controlled trial:

Marathon race - samples: lymphocyte

NF-kb p50 activation, plasma MDA and

XO activity

Allopurinol prevented XO activation and

lipid peroxidation. Inhibiton of XO-derived

ROS formation prevented NF-kB activa-

tion. Allopurinol had no effect on race time
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Study (y) Subjects Supplements (daily dose) Duration Study design Findings

Close et al.[197]

(2006)

20 M Vitamin C (1 g) 2 h prior to

and for

2 wk post-

exercise

Randomized placebo-controlled

double-blind trial: Exercise protocol:

downhill running test (30 min, 60%
.
VO2max).

Measurements: pain assessment (visual

analogue scale, pressure algometry) and

muscle function (quadriceps torque

assessment). Samples: serum MDA

Supplementation with vitamin C fl
exercise-induced increase in MDA levels

but had no effect on DOMS. Delayed

recovery of muscle function was noted in

the supplemented group

Fischer et al.[99]

(2006)

21 M a-Tocopherol

(400 IU) + vitamin C

(500 mg)

4 wk Randomized placebo-controlled single-

blind trial: Exercise protocol: 3 h, 2-legged

dynamic knee extensor exercise. Samples:

muscle HSP72 mRNA and protein, plasma

HSP72 and F2-isoprostanes

a-Tocopherol + vitamin C treatment

attenuated › in lipid peroxidation post-

exercise. Exercise-induced increase in

HSP72 levels in skeletal muscle and

circulation was abolished in a-tocopherol +
g-tocopherol + vitamin C group

a-Tocopherol (290 IU)

+ g-tocopherol

(130 IU) + vitamin C

(500 mg)

Knez et al.[93]

(2007)

16 half-

Ironman

triathletes

(13 M, 3 F)

Vitamin C

(1095 – 447 mg) + vitamin E

(314 – 128 mg)

Vitamin C:

4.9 – 4.7 y;

vitamin E:

5.6 – 5.2 y

Observational study: subjects recruited 4 wk

before the race, controls active <3h/wk:

Triathletes: training and competing for

4.7 – 2.4 y, 14.5 – 3.4 h/wk, 10 taking

supplements; race: 1.9 km swim, 90.1 km

cycle, 21.1 km run. Samples: plasma MDA

and erythrocyte SOD, GPX and CAT

activities

Dose-response relationship between

adaptations of antioxidant enzymes and

responses to ultraendurance exercise.

Ultraendurance training upregulated

endogenous antioxidant system (GPX and

CAT activity). Triathletes taking

supplements had elevated post-race MDA

levels compared with nonsupplementers

29 Ironman

triathletes (23

M, 6 F)

Vitamin C

(558 – 350 mg) + vitamin E

(702 – 756 mg)

Vitamin C:

0.8 – 0.6 y;

vitamin E:

1.6 – 0.8 y

Triathletes: training and competing for

6.9 – 6.4y, 17.19 – 3.4h/wk, 8 taking

supplements; race: 3.8km swim, 180km

cycle, 42.2km run. Samples: plasma MDA

and erythrocyte SOD, GPX and CAT activities

Richardson

et al.[254] (2007)

25 M Dose: a-lipoic acid

(300 mg) + vitamin C

(500 mg) + vitamin E

(200 IU)

2 h and

1.5 h prior

to exercise

Randomized placebo-controlled crossover

double-blind trial: Exercise protocol:

forearm handgrip exercise at low-intensity

workload (3, 6 and 9 kg at 0.5 Hz) for 3 min.

Measurements: plasma FR, vasodilation.

Antioxidant administration › total

antioxidant capacity and fl exercise-

induced oxidative stress but fl brachial

artery vasodilation during submaximal

exercise.Dose: a-lipoic acid

(300 mg) + vitamin C

(500 mg) + vitamin E

(400 IU)

Gomez-Cabrera

et al.[97] (2008)

14 sedentary M Vitamin C (1 g) 8 wk Randomized double-blind controlled trial:

Exercise test:
.
VO2max test (bicycle

ergometer). Exercise training: 40 min

cycling 3 d/wk (65%-80%
.
VO2max)
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Table I. Contd

Study (y) Subjects Supplements (daily dose) Duration Study design Findings

36 M rats Vitamin C: 0.24 mg/cm2

body surface area

3 wk; 6 wk Untrained group, trained group,

trained + supplemented group:

RT-PCR experiment: 3 wk training.

Western blotting and performance

experiments: 6 wk training. Exercise

training: 5 d/wk, treadmill (75%
.
VO2max,

25-85 min/d). Endurance test (run to

exhaustion),
.
VO2max test (treadmill run).

Samples: muscle mTFA and NRF-1 mRNA

and protein, cyt c and PGC-1 protein, Mn-

SOD and GPX mRNA

Moderate intensity exercise enhanced

endogenous antioxidant defence (›
expression of Mn-SOD and GPX) and

mitochondrial biogenesis (upregulation of

PGC-1 - NRF-1 - mTFA - cyt c

pathway) and increased endurance

capacity. Vitamin C prevented these

training induced adaptations

Copp et al.[255]

(2009)

19 M rats Vitamin C

(76 mg/kg) + tempol

(52 mg/kg)

Acute

infusion

(after first

exercise

protocol)

Exercise protocol (right spinotrapezius

muscle): 1 Hz twitch contractions for

180 sec (2 sessions: pre- and post-

antioxidant administration);13 rats: blood

flow and PO2mv measurements; 6 rats:

muscle force measurements

Antioxidant administration › serum

antioxidant capacity but fl blood flow,

baseline PO2mv, muscle oxygen utilization

and muscle force production

Lamprecht

et al.[174] (2009)

8 trained M

cyclists

Vitamin E (107 IU) +
vitamin C (450 mg) +
b-carotene (36 mg) + Se

(100 mg)

2 wk Randomized double-blind placebo-

controlled crossover trial:

Exercise test: cycle ergometer, 90 min

cycling (45%
.
VO2max) + 30 min cycling (75%

.
VO2max). Samples: plasma MDA and GPX

MDA concentrations were › and GPX

levels fl after antioxidant treatment (pre-

and post-exercise)

Ristow et al.[91]

(2009)

20 untrained

M (<2 h of

exercise/wk),

20 pretrained

M (>6 h of

exercise/wk)

Vitamin C (1 g) + vitamin E

(400 IU)

4 wk Controlled trial, 2 part-study – open-label

study; double blind placebo-controlled

study: 4 groups: untrained nonsupplemented,

trained nonsupplemented, untrained

supplemented, trained supplemented.

Exercise training – 5 d/wk, session: 20 min

biking/running, 45 min circuit training.

Measurements: GIR. Samples: plasma

adiponectin, muscle PGC-1a, PGC-1b,

PPARg, SOD1 and SOD2, and GPX gene

levels

Exercise training › insulin sensitivity,

fl fasting plasma insulin levels, › gene

expression of PGC-1a, PGC-1b, PPARg,
SOD1 and SOD2, GPX (irrespective of

training status). Supplementation with

vitamins E and C was shown to prevent

these health promoting effects

Teixeira et al.[165]

(2009)

20 competitive

kayakers

(14 M, 6 F)

a-Tocopherol

(272 mg) + vitamin C

(400 mg) + b-carotene

(30 mg) + lutein (2 mg) + Se

(400 mg) + Zn (30 mg) + mg

(600 mg)

4 wk Randomized double-blind placebo-

controlled trial: Exercise test: maximal

flat-water kayaking trial (1000 m).

Samples: plasma antioxidants, TBARS,

IL-6 and CK, SOD, GR, GPX activities

Antioxidant supplementation › antioxidant

capacity but had no effect on oxidative

stress and inflammation markers.

Supplemented athletes showed a blunted

decrease in CK activity post-exercise
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Table I. Contd

Study (y) Subjects Supplements (daily dose) Duration Study design Findings

Wray et al.[256]

(2009)

6 older, mildly

hypertensive M

Dose: a-lipoic acid

(300 mg), vitamin C

(500 mg), vitamin E

(200 IU)

Prior to and

after 6 wk

of training:

2 h before

exercise

protocol

Double-blind placebo-controlled

crossover trial: Exercise protocol – d 1,

2: antioxidant efficacy test; d 3–6: FMD

procedure followed by knee extensor

exercise, subjects crossed over, returned

after 24 h. Exercise training: 3 · wk-single

leg knee-extensor exercise. Measurements:

plasma FR, BP and FMD

Antioxidant administration reduced FR

levels pre- and post-exercise. Exercise

training reduced BP and improved

vasodilation, supplementation after training

negated these effects

Dose: a-lipoic acid

(300 mg), vitamin C

(500 mg), vitamin E

(400 IU)

Prior to and

after 6 wk

of training:

30 min

after 1

Bailey et al.[110]

(2010)

38 M Vitamin C

(800 mg) + vitamin E

(536 mg) + vitamin B6

(4 mg) + vitamin B9

(400 mg) + zinc sulphate

monohydrate

(10 mg) + vitamin B12 (2 mg)

6 wk

(including.

2 d post-

exercise)

Randomized placebo-controlled double-

blind trial: Exercise test (d 40): 90 min

intermittent high-intensity shuttle-running.

Measurements: pre- and post-exercise

ratings of perceived muscle soreness and

assessment of muscle function (peak

isometric torque of the knee flexors and

extensors, range of motion at the knee

joint). Samples: urine F2-isoprostanes,

serum IL-6 and cortisol

Antioxidant supplementation was

associated with attenuated exercise-

induced › in cortisol concentration but

›post-exercise IL-6 and F2-isoprostane

levels (compared with the placebo).

Treatment had no effect on indices of

muscle damage, muscle function

measures and perception of muscle

soreness

Matsumoto

et al.[257] (2011)

48 M rats a-Tocopherol (1000 IU/kg

diet) + a-lipoic acid

(1.6 g/kg diet)

14 wk Controlled trial: 4 groups: untrained

nonsupplemented, trained

nonsupplemented, untrained

supplemented, trained supplemented.

Exercise training: 90 min treadmill run

4 d/wk. Samples: left ventricular and

coronary artery endothelial cells (gene

analysis)

IL-6 gene levels were fl by all treatments.

RhoA gene expression was fl by exercise

training, › by antioxidant supplementation.

The combination of exercise and

supplementation resulted in a blunted fl of

RhoA gene levels (compared with the

exercise training effect)

1RM = repetition maximum; 8-OHdG = 8-hydroxy-2-deoxyguanosine; 8-oxoG = 7,8-dihydro-8-oxoguanosine; BP = blood pressure; BW = bodyweight; CAT = catalase; CK = creatine

kinase; cyt c = cytochrome c; DOMS = delayed onset muscle soreness; DHLA = dihydrolipoic acid; ERK = extracellular signal-regulated protein kinases; F = female; FMD = flow-

mediated vasodilation; FR = free radical; GIR = glucose infusion rate; GPX = glutathione peroxidase; GR = glutathione reductase; GSH = reduced glutathione; GSSG = oxidized

glutathione; H2O2 = hydrogen peroxide; HSP = heath shock protein; IL-1ra = interleukin 1 receptor antagonist; IL-6(8) = interleukin-6(8); LDH = lactate dehydrogense; M = male;

MAPK = mitogen activated protein kinase; max = maximal; MDA = malondialdehyde; mRNA = messenger RNA; mTFA = mitochondrial transcription factor A; NAC = N-acetyl

cysteine; NF-jB = nuclear factor kappa-light chain-enhancer of activated B cells; NOS = nitric oxide synthase; NRF-1 = nuclear respiratory factor 1; p38 = a member of MAPKs; p50 = a

subunit of NF-kb complex; PGC-1 = peroxisome proliferator-activated receptor gamma coactivator 1; PPARc = peroxisome proliferator-activated receptor gamma; PO2mv =
microvascular O2 partial pressure; Po = max specific tension; Pt = twitch tension; RhoA = Ras homolog gene family member A; RT-PCR = real-time reverse transcriptase-polymerase

chain reaction; Se = selenium; SOD = superoxide dismutase; submax = submaximal; TBARS = thiobarbituric acid reactive substances;
.
VO2 = oxygen uptake;

.
VO2max = maximal.

VO2; XO = xanthine oxidase; Zn = zinc; ›› indicates increase; flfl indicates decrease; - indicates ‘leads to’/outcome.
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5.1 Antioxidant Supplements Promote
Exercise-Induced Oxidative Stress

Antioxidants, especially when present in high
amounts, have been shown to increase markers of
exercise-induced oxidative stress. After high-
intensity exercise, coenzyme Q10 supplementa-
tion was associated with an increase in a marker
of cell damage (CK)[249] and a decrease in
exercise-training induced improvements in phy-
sical performance.[249,250] A number of important
methodological details were omitted from the
articles, indicating low quality. A study by Childs
et al.[175] found that vitamin C and N-acetyl-
cysteine following eccentric arm exercise in-
creased oxidative stress and cell damage above
levels induced by muscle injury alone. The effects
of vitamins E and C alone and in combination
were investigated in seven male cyclists.[144]

Vitamin E decreased malondialdehyde, an oxi-
dative stress marker, whereas the combination of
both had no effect and vitamin C increased mal-
ondialdehyde. This indicates that the type of anti-
oxidant (e.g. water vs lipid soluble) is likely to be
an important factor. In another study, an in-
crease in the serum CK levels following a 3-day
resistance exercise was greater after the use of
vitamin E supplements compared with a placebo
group.[202] However, the increase was both
modest and transient with no effect of supple-
mentation on muscle soreness and exercise
performance. Furthermore, variability in the
baseline CK levels between groups and the large
interindividual variability of the measure need to
be considered.

Two months of supplementation with high
doses of vitamin E had no effect on the race time
of Ironman Triathlon participants but was asso-
ciated with increased lipid peroxidation and in-
flammation.[176] Knez et al.[93] demonstrated that
ultraendurance training upregulated the resting
activity of several antioxidant enzymes and re-
duced resting levels of oxidative stress, whilst
supplementation with vitamins C and E had no ef-
fect on these values. Moreover, athletes taking sup-
plements had elevated post-race malondialdehyde
levels compared with nonsupplementers. It is im-
portant to recognize that this was only an observa-

tional study; although, when a randomized control-
led crossover design was used, similar findings were
reported with 2 weeks of supplementation with an
antioxidant concentrate (vitamins E, C, b-carotene
and selenium) associated with increased lipid
peroxidation and decreased plasma glutathione
peroxidase concentration pre- and post-exercise.[174]

Finally, in a recent study by Bailey et.al.,[110] young
men were supplemented with a combination of
vitaminsC andE for 6weeks before and 2 days after
a 90-minute intermittent shuttle run. The supple-
mented subjects had increased markers of oxidative
stress and inflammation compared with the placebo
group. However, although the overall change
in isoprostane levels (baseline vs post-exercise) ap-
proached significance, the tendency for slightly
higher isoprostane levels in the placebo group at
baseline precluded establishment of any significant
differences at the final recovery timepoint. The
authors noted that a large inter-individual variability
in the responses of isoprostanes and interleukin (IL)-
6 after supplementation could have impacted on the
findings. Indeed, in all of the above mentioned
studies therewere no attempts to provide sample size
or power calculations to assess the likelihood that
the findings were real.

5.2 Antioxidant Supplementation Hinders
Cell Adaptation to Exercise-Induced
Oxidative Stress

Cells adapt to increased exposure to oxidation,
thereby reducing the risk of tissue damage.[90,98,258]

Five small studies now show that antioxidant
supplements hinder the beneficial cell adaptations
to exercise.[97-99,252,253] In a group of untrained
males, supplementation with vitamin C resulted in
the inactivation of redox-sensitive transcription
factors responsible for the expression of cytopro-
tective proteins, including HSPs.[98] Such suppres-
sion of cell adaptation may negatively impact cell
viability over the longer term. Similarly, supple-
mentation with g-tocopherol inhibited an exercise-
induced increase of HSP levels in skeletal muscle
and the circulation.[99]

A research group at the University of Va-
lencia, Valencia, Spain has published a number of
important studies on this topic. In one of their
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first studies they used allopurinol in rats and
found it attenuated the exercise-induced increase
of XO activity and ROS formation.[252] This was
associated with a decreased activation of mito-
gen-activated protein kinases (MAPKs) and
blunted DNA-binding of nuclear factor kappa B
(NF-kB). MAPKs respond to extracellular sti-
muli, including oxidative stress, and regulate cell
development and survival. Transcription factor
NF-kBmediates gene expression of enzymes such
as Mn-SOD, eNOS and iNOS. Therefore, im-
pairing the exercise training effects on MAPKs
and NF-kB would likely impact on these positive
benefits. Indeed, in humans, administration of
allopurinol prior to a marathon race did suppress
the exercise-induced increase of antioxidant en-
zyme expression.[253] In another study, Gomez-
Cabrera et al.[97] showed that chronic supple-
mentation with vitamin C impacted on exercise
performance by decreasing exercise training effi-
ciency. This was shown in both humans and rats.
Analysis of animal muscles showed that the anti-
oxidant supplementation inhibited upregulation
of Mn-SOD and GPX gene expression. More-
over, attenuated mitochondrial biogenesis in the
supplemented rats was indicated by reduced
protein levels of cytochrome c (cyt c) and
transcription factors peroxisome proliferator-
activated receptor co-activator 1 (PGC-1), nuclear
respiratory factor 1 (NRF-1) and mitochondrial
transcription factor A (mTFA). Cyt c, a protein
in the inner membrane of mitochondria, is an
essential component of the electron transport
chain and serves as a marker of mitochondrial
content. PGC-1 is a transcriptional coactivator of
the genes involved in cellular energy metabolism.
It induces messenger RNA expression of NRF-1
and mTFA and provides a link between ex-
ternal physiological signals and mitochondrial
biogenesis.

In a recent study from our laboratory,[257] the
effects of 14 weeks of antioxidant supplementa-
tion (a-tocopherol and a-lipoic acid) and tread-
mill exercise on myocardial and vascular endo-
thelium gene expression were investigated in rats.
Both antioxidant therapy and exercise training
downregulated IL-6 gene expression, while the
expression of the RAS homolog gene family

member A (RhoA), a gene involved in cardio-
vascular disease progression, was upregulated by
antioxidant supplementation and downregulated by
exercise. The combination of supplementation and
exercise resulted in a blunted downregulation of
RhoA expression. These findings confirmed an un-
favourable effect of antioxidants on exercise-
induced cardiovascular protection.

5.3 Reactive Oxygen Species Elimination
and Physiological Processes

Given that reactive species play an important
role in the regulation of muscle contractile ac-
tivity, their elimination with high doses of anti-
oxidants may result in negative effects on muscle
function. We have shown that supplementation
of rats with vitamin E and a-lipoic acid decreased
lipid peroxidation after a fatigue protocol but
had no effect on fatigue resistance.[251] Moreover,
high levels of vitamin E depressed muscle force
production at low stimulation frequencies. Acute
supplementation of rats with vitamin C and
tempol, a radical scavenger, reduced skeletal
muscle blood flow, oxygen utilization and force
production at rest and during electrically stimu-
lated contractions.[255]

Close and colleagues[197] found consumption
of high doses of vitamin C in the days post-
exercise delayed the recovery of muscle function
in humans. Chronic supplementation of compe-
titive kayakers with a mixture of vitamins and
minerals failed to protect from exercise-induced
oxidative stress and inflammation, and hindered
the recovery of muscle damage after a 1000 m
race.[165] Together, these findings suggest that
ROS produced post-exercise play a role in muscle
regeneration.

Physical activity is known to improve insulin
sensitivity as the transient rise in ROS production
efficiently counteracts insulin resistance.[91] In
one of the most interesting studies on this topic,
Ristow et al.[91] reported that supplementation
with vitamins E and C inhibited the insulin sen-
sitizing effects of exercise training, regardless of
previous training status. They found that ex-
ercise-induced oxidative stress increased expres-
sion of ROS-sensitive transcriptional regulators
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of insulin sensitivity PGC-1a, PGC-1b and per-
oxisome proliferator-activated receptor-g, a nu-
clear receptor protein involved in fatty acid sto-
rage and glucose metabolism. Exercise training
also decreased fasting plasma insulin levels
and caused an adaptive response promoting
endogenous antioxidant defence capacity by up-
regulation of SOD1, SOD2 and GPX gene
expression. Supplementation with antioxidants
precluded these health promoting effects of
exercise in both pre-trained and untrained men.

Reactive species act as potent vasodilators and
may be an important part of the vasodilatory
response during exercise. Administration of an
antioxidant cocktail (vitamins C, E and a-lipoic
acid) augmented plasma antioxidant capacity
and reduced circulating levels of free radicals in a
group of healthy young males.[254] Importantly,
brachial artery vasodilation was decreased during
a submaximal handgrip exercise in the supple-
mented group. The direct measurement of oxi-
dative stress is a strength of this study. Wray
et al.[256] from the same research group, showed
that 6 weeks of single leg knee-extensor exercise
lowered blood pressure at rest and during ex-
ercise in a group of mildly hypertensive older
men. Acute administration of a-lipoic acid, vita-
min C and vitamin E after the training period
returned blood pressure to pre-training values.
Furthermore, with exercise training, vasodilation
improved significantly, but the effect was blunted
after consuming antioxidants. It was concluded
that antioxidant administration negated the
health benefits of exercise training in older in-
dividuals. Although the study only included six
subjects, the authors state they had sufficient
statistical power.

Negative outcomes following the combination
of two potentially beneficial interventions em-
phasize the complex nature of oxidative stress.
Reactive species in skeletal muscle are generated
in response to physiological and pathophysio-
logical stimuli and are not solely by-products of
aerobic metabolism. Attempts to decrease their
levels, such as, for example, through antioxidant
supplementation, may lead to a blunting of po-
sitive effects of exercise and even deleterious
health effects.

6. Limitations of the Studies and Future
Directions

An obvious limitation of the current body of
research on this topic is the lack of studies
investigating antioxidants other than vitamin E,
vitamin C and coenzyme Q10. Despite the vast
range of antioxidant supplements commercially
available, many of these compounds have not been
studied based on our systematic search. Therefore,
generalizing the results to all antioxidant supple-
ments may be problematic. Furthermore, numer-
ous methodological issues interfere with the ability
to interpret the effects of antioxidant supple-
mentation on exercise. These include differences in
exercise protocols, subject population, dosage and
form of supplements, duration and timing of sup-
plementation, and the methodology used to assess
oxidative stress. It should be made clear that de-
tection of differences between treatment and con-
trol groups in measured indices does not imply
cause and effect of antioxidant supplements. Most
studies investigated the effect of supplementation
in small groups of subjects and did not employ a
crossover design that could easily lead to type I and
type II errors.[99,202,249,250,259]

Null findings in supplementation studies could
be partially explained by insufficient dosages or
treatment durations and the lack of sensitive de-
tection techniques. Most studies lacked informa-
tion on the redox state of the subjects to confirm
whether their endogenous defence system was
actually overwhelmed by increased ROS forma-
tion. For instance, highly trained individuals may
experience an attenuated oxidative stress res-
ponse, especially with long-duration, low-
intensity exercise protocols. This is likely due to
an enhanced endogenous antioxidant defence
that is sufficient to combat an increased free
radical production, thus masking any potential
effect of supplementation. However, prolonged
vigorous exercise can lead to a very large increase
in ROS production, overwhelming antioxidant
systems. In such conditions, additional doses of
antioxidants may not exert any significant effect
on oxidative stress levels.

Furthermore, detection depends, to a large
degree, on the tissue/biofluid sampled, the timing
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of sampling and the sensitivity and specificity of
the chosen biomarker. For example, in some
studies, oxidative stress may have occurred pre-
ceding or following the sample collection and
was therefore not detected. Importantly, nearly
all of the studies included in the review did not
determine the actual levels of ROS but, rather,
measured indirect markers of oxidative stress,
such as by-products of lipid, protein and DNA
damage.[93,144,174,175,197,202,259] In addition, in the
majority of the studies, a single assay analysis of
oxidative stress was used. Indeed, investigating
only a particular oxidative stress marker does not
represent universal oxidative stress status. Given
the complexity of oxidative stress, a number of
markers should be chosen (e.g. lipid peroxidation
and protein oxidation measures). Moreover,
changes in redox status within cells may be
compartmentalized and regulated via specific
signalling pathways. It seems highly unlikely that
various potential targets in cells would show an
equivalent sensitivity to specific ROS. In addi-
tion, ROS are present in low concentrations in
biological systems, have short half-lives and are
highly reactive. Thus, direct measurement is dif-
ficult and as reactive species cannot be targeted
easily exogenous antioxidants may not scavenge
the relevant ROS.

Difficulty in quantifying oxidative stress and
understanding the health implications of oxida-
tive stress measures are important issues when
establishing appropriate intervention strategies.
Despite the increasing awareness of the im-
portance of reactive species, screening and mon-
itoring of oxidative stress has not yet become
routinely available. Individuals are often recom-
mended antioxidant therapy, although there is no
test that advises whether to assess if they are
exposed to increased levels of free radicals or
have depleted antioxidant capacities.

Careful reassessment of the existing evidence is
warranted to better understand the conflicting
data and design future studies appropriately.
There is a need for more rigorous clinical trial
designs with populations under high levels of
oxidative stress and carefully chosen outcomes.
Large randomized controlled trials with exercis-
ing individuals consuming a variety of anti-

oxidant supplements and using hard endpoints,
such as onset of disease, would need to be con-
ducted to adequately address the question of the
impact of antioxidant supplementation on ex-
ercise-induced oxidative stress. Bioavailability
and pharmacokinetics of antioxidants should be
examined closely to establish the dosage, timing
and duration of supplementation that would
significantly reduce oxidative stress levels in the
study participants. In addition, nutrigenomic is-
sues might be considered as people respond dif-
ferently to particular antioxidants based on their
genetic profile. Further research, supported by
improved techniques to measure oxidative stress
and target specific ROS, will help to clarify
the potential roles of antioxidant supplements in
exercise-training.

7. Optimizing Nutrition

7.1 Summary

Studies included in this review have demon-
strated disparate results with regards to the ef-
fects of antioxidant supplementation on exercise-
induced oxidative stress. In summary, there is
insufficient evidence to recommend antioxidant
supplements for exercising individuals who con-
sume the recommended amounts of dietary anti-
oxidants through food. Antioxidant supplements
generally do not improve physical performance.
There is little proof to support their role in pre-
vention of exercise-induced muscle damage and
enhancement of recovery. Although ingesting
supplemental antioxidants can decrease exercise-
induced oxidative stress, there is no evidence that
this confers health benefits. Further work is
warranted to illuminate the interactive effects of
exercise training and antioxidant supplementation.

7.2 Current Recommendations

The outcomes of supplementation studies
have important implications for nutritionists,
physicians, practitioners, exercise trainers and
athletes, as well as for the general population.
Reports that high doses of antioxidants preclude
health-promoting effects of exercise training and
interfere with ROS-mediated physiological pro-
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cesses suggest caution in the use of antioxidant
supplements. Physically active individuals need
to optimize their nutrition rather than use sup-
plements. Diets rich in antioxidants should
be attained by consuming a variety of fruits, ve-
getables, whole grains and nuts. Whole foods,
rather than capsules, contain antioxidants pre-
sented in beneficial ratios and numerous phyto-
chemicals that may act in synergy with the former
to optimize the antioxidant effect. Antioxidant
supplementation may be warranted when in-
dividuals are exposed to high levels of oxidative
stress and struggle to meet the dietary antioxidant
requirements. Athletes, who restrict their energy
intake, use severe weight loss practices and elim-
inate one or more food groups from their diet
or consume unbalanced diets with low micro-
nutrient density, are at risk of suboptimal anti-
oxidant status. A qualified sports dietitian would
need to provide individualized nutrition direction
and advice subsequent to blood analysis and
comprehensive nutritional assessment. Careful
product evaluation is required prior to adopting
an antioxidant regimen, which should be
clinically supervised and should only represent a
short-term solution while dietary changes are
being implemented.

8. Conclusions

The multifunctional role of reactive species in
living organisms, and the beneficial and deleterious
effects of antioxidant supplementation demon-
strate the complexity of exercise-induced oxidative
stress. Interactions of antioxidants and reactive
species should be carefully considered as the redox
state will dictate cell functioning. More detailed
research and critical appraisal of the situations that
may warrant antioxidant supplementation in
exercise training are required. A balanced diet in-
cluding a variety of fruits and vegetables remains
the best nutritional approach to maintain optimal
antioxidant status.
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40. Brigelius-Flohé R, Traber MG. Vitamin E: function and
metabolism. FASEB J 1999; 13 (10): 1145-55

41. Padayatty SJ, Katz A, Wang Y, et al. Vitamin C as an
antioxidant: evaluation of its role in disease prevention.
J Am Coll Nutr 2003; 22 (1): 18-35

42. Paiva SAR, Russell RM. beta-Carotene and other car-
otenoids as antioxidants. J Am Coll Nutr 1999; 18 (5):
426-33

43. Mueller L, Boehm V. Antioxidant activity of b-carotene
compounds in different in vitro assays.Molecules 2011; 16
(2): 1055-69

44. Chew BP, Park JS. Carotenoid action on the immune res-
ponse. J Nutr 2004 Jan 1; 134 (1): S257-61

45. Bentinger M, Tekle M, Dallner G. Coenzyme Q: bio-
synthesis and functions. Biochem Biophys Res Commun
2010; 396 (1): 74-9

46. Quideau S, Deffieux D, Douat-Casassus C, et al. Plant
polyphenols: chemical properties, biological activities,
and synthesis. In: Peter Golitz, editor. Angewandte Che-
mie International Edition. Weinheim: Wiley, 2011; 50 (3):
586-621

47. Miatello R, Vázquez M, Renna N, et al. Chronic adminis-
tration of resveratrol prevents biochemical cardiovascular
changes in fructose-fed rats. Am J Hypertens 2005; 18 (6):
864-70

48. Knekt P, Kumpulainen J, Järvinen R, et al. Flavonoid in-
take and risk of chronic diseases. Am J Clin Nutr 2002; 76
(3): 560-8

49. Kagan VE, Serbinova EA, Forte T, et al. Recycling of vi-
tamin E in human low density lipoproteins. J Lipid Res
1992; 33 (3): 385-97

50. Petersen Shay K, Moreau RF, Smith EJ, et al. Is alpha-
lipoic acid a scavenger of reactive oxygen species in vivo?
Evidence for its initiation of stress signaling pathways that
promote endogenous antioxidant capacity. IUBMB Life
2000; 60 (6): 362-7

51. Kerksick C, Willoughby D. The antioxidant role of
glutathione and N-acetyl-cysteine supplements and ex-
ercise-induced oxidative stress. J Int Soc Sports Nutr
2005; 2: 38-44

52. Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of
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athletes. Pflügers Arch European J Physiol 2002; 443 (5):
791-7

144. Bryant RJ, Ryder J, Martino P, et al. Effects of vitamin E
and C supplementation either alone or in combination on
exercise-induced lipid peroxidation in trained cyclists.
J Strength Cond Res 2003 Nov; 17 (4): 792-800
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